And how does Google fit in?
Are you already thinking about what you’ll be reading next? On your typical news or content website, articles are queued up so that readers always have opportunities for a next click.
These are called “content recommendations,” and they range widely in what they recommend and how they recommend it. Though they’re practically ubiquitous, their presence is sometimes even surprising to the authors writing the stories they surround.
News organizations evaluating the content they recommend to readers should, like with any product, have a clear understanding of the goals of these recommendations. Here, we’ve broken down types of content recommenders, along with the pros and cons of each.
“Sponsored and Promoted Content”
The lines between content and advertising often blur on the web, and the popularity of sponsored content (aka native advertising or promoted posts) has continued to rise across major publishers. The formula involves pay-per-click links that drive readers to off-site content, popularized by companies like Outbrain and Taboola. While providing much-needed revenue for publishers, common complaints range from irrelevant links to “click-bait” stories and headlines.
“Recommendations by Metric”
Article recommendations based on successful metrics can clue in a reader to make sure they don’t miss anything that’s trending: top by views, most shared, actively commented.
Who’s mostly likely to click on these? A loyal brand reader will find these helpful, as they don’t want to miss anything on your site and are already actively engaged with other community members. If they’re too broad, though, they could also lose someone’s interest. Variety, relevance and serendipity are often left out of the formula if you only showcase your most popular hits. And large sites can be subject to “traffic echo chambers”, where posts that grow in popularity end up being more heavily promoted in recommendations, thus becoming yet more popular, ad infinitum.
“Recommendations by Relevance”
Finally, we get to recommendations as popularly conceptualized in innovative products like Netflix’s movie recommendation algorithm and Pandora’s personalized radio service. You could call these “smart” recommendations. For content publishers, recommendations by relevance can take into account personalized data (e.g. past visit history), author/section preferences, and contextual information, like traffic source, content tags or natural language processing applied to the text of the articles.
The benefit to this more robust option is well summed-up by Michael Tamblyn, Chief Content Creator of Kobo, an e-book retailer in this article on the science of internet based recommendations from e-comm to music. Tamblyn describes what makes great recommendations valuable:
“Whether they be in person or on a device, they are always the result of sifting huge amounts of information about which books have sold, when and to whom. A great human bookseller does this intuitively – thinking about previous purchases, trends, what’s selling, what friends are reading, what you like and don’t like. We do the same thing using data, analytics and algorithms, social activity, ratings and other data to suggest your next great book”.
The Future of Content Recommendations
And what do we see in the future? Well, for one thing, this is a space that has even drawn interest from Google.
With years of expertise on suggesting websites and news stories through search, plus a massive Adwords and display ad network, Google is poised to compete with providers across the recommendation engine space. However, many publishers may be hesitant to outsource this critical site functionality to a black box algorithm, especially as Google continues to consolidate its reach across the digital advertising ecosystem. There are still a lot of questions around how it will enter the market, what effect it will have, and how site managers will react.
As for publishers, they should keep their eye on the ball: driving a rich relationship with readers by providing that critical next click of relevant content.
Interested in implementing a customizable content recommendation engine on your site? At Parse.ly, we have a widely-used and powerful platform that can power recommendations using any of the above strategies. You can find out more by signing up for a Parse.ly trial or visiting our technical documentation portal at http://parse.ly/docs.